Zuckerabhängigkeit: Schalter für Zuckertransport ins Gehirn entdeckt
Unser Gehirn holt sich Zucker durch einen aktiven Prozess aus dem Blut.
Das haben jetzt Diabetesforscher des Deutschen Zentrums für Diabetesforschung am Helmholtz Zentrum München entdeckt. Bisher ging man davon aus, dass es sich dabei um einen rein passiven Vorgang handelte. Wissenschaftler um Professor Matthias Tschöp fanden heraus, dass der Zuckertransport ins Gehirn durch sogenannte Stützzellen reguliert wird. Die Forscher konnten jetzt auch zeigen, dass diese Zellen auf Hormone wie Insulin oder Leptin reagieren – dies hielt man bisher nur für Nervenzellen für möglich.
Unsere Gesellschaft steht durch den rapiden Anstieg von Übergewicht und der damit verbundenen Verbreitung von Typ-2-Diabetes vor einer enormen Herausforderung. Immer noch fehlt es an effizienten und sicheren Medikamenten, um diese Entwicklung aufzuhalten. Dies liegt vor allem daran, dass die Mechanismen des Zucker- und Energiestoffwechsels immer noch völlig unzureichend erforscht sind.
Treibstoff für die Schaltzentrale
Ein Wissenschaftlerteam um Prof. Dr. Matthias Tschöp, Direktor des Helmholtz Diabetes Zentrums (HDC) und der Abteilung für Stoffwechselerkrankungen an der Technischen Universität München, erforscht, wie Schaltzentralen im Gehirn unseren Stoffwechsel fernsteuern, um ihn optimal auf unsere Umwelt einzustellen.
Das Hirn ist das Organ mit dem höchsten Zuckerverbrauch im Körper und kontrolliert unser Hungergefühl.
„Wir vermuteten deswegen, dass es bei so einem wichtigen Vorgang, wie der Versorgung des Gehirns mit ausreichend Zucker, nicht um einen zufälligen Prozess handeln konnte“, sagt Dr. Cristina García Cáceres, Neurobiologin am HDC und Erstautorin der Studie. „Lange Zeit ließen wir uns davon in die Irre führen, dass Nervenzellen diesen Prozess offensichtlich nicht kontrollieren. Dann hatten wir die Idee, dass Astrozyten, die man bisher als weniger wichtige ‚Stützzellen‘ missverstanden hatte, vielleicht etwas mit Zuckertransport ins Gehirn zu tun haben könnten.”
Die Wissenschaftler untersuchten deshalb zunächst die Aktivität von Insulinrezeptoren auf der Oberfläche der Astrozyten, also jenen Strukturen, über die Insulin Einfluss auf Zellen nimmt. Dabei stellten sie fest, dass beispielsweise Mäuse, denen dieser Rezeptor auf bestimmten Astrozyten fehlte, eine deutlich geringere Aktivität in Nervenzellen aufwiesen, die die Nahrungsaufnahme zügeln (die sogenannten Proopiomelanocortin Neuronen). Gleichzeitig hatten solche Mäuse Schwierigkeiten, ihren Stoffwechsel anzupassen, wenn sich die Zuckerzufuhr änderte. Mit Hilfe bildgebender Methoden konnten die Wissenschaftler dann zeigen, dass Hormone wie Insulin und Leptin an Stützzellen wirken, um die Aufnahme von Zucker ins Gehirn zu regulieren.
Ohne Insulinrezeptoren zeigten die Astrozyten vor allem im Bereich der Appetitzentralen im sogenannten Hypothalamus entsprechend schlechtere Transportraten von Glukose ins Gehirn.
Ein Paradigmenwechsel
„Unsere Ergebnisse zeigen erstmals, dass essentielle Stoffwechsel- und Verhaltensprozesse nicht nur über Nervenbahnen reguliert werden, sondern dass auch andere Zelltypen wie Astrozyten, hier eine entscheidende Rolle spielen“, so Studienleiter Matthias Tschöp, der auch die Entwicklung neuer Therapien am Deutschen Zentrums für Diabetesforschung (DZD) leitet. „Das stellt einen Paradigmenwechsel dar und könnte ein Grund dafür sein, dass sich die Entwicklung neuer Medikamente für Diabetes und Adipositas bisher so schwierig gestaltete.“
Um das alte Modell der Kontrolle von Nahrungsaufnahme und Körperstoffwechsel durch Nervenzellen im Gehirn jetzt durch ein Konzept zu ersetzen, bei dem auch Astrozyten und eventuell sogar Immunzellen des Gehirns eine wichtige Rolle spielen, müssen zahlreiche neue Studien auf den Weg gebracht werden. Erst wenn das Zusammenspiel dieser verschiedenen Zellen etwas besser verstanden ist, gelte es dann, Wege und Stoffe zu finden, wie man in diese Signalketten eingreifen kann, um eventuell Zuckerabhängigkeit zu unterbinden und letztlich die wachsende Zahl an Zuckerkranken und Übergewichtigen besser behandeln zu können.
“Da liegt sehr viel Arbeit vor uns,” so Garcia-Caceres, “aber wenigstens wissen wir jetzt, in welchen Zellen wir suchen müssen.”
Weitere Informationen erhalten Sie direkt unter www.dzd-ev.de
Hintergrund:
* Astrozyten sind die häufigsten Zellen im Gehirn. Unter anderem bilden sie die Bluthirnschranke, indem sie die im Hirn verlaufenden Blutgefäße umschließen und nur bestimmte Stoffe gezielt zu den Nervenzellen durchlassen.
** Erst vor kurzem hatten die Wissenschaftler bereits gezeigt, dass Astrozyten auch auf das Stoffwechselhormon Leptin reagieren (Kim et al., 2014). Dieses ist ein wichtiger Faktor für das Sättigungsgefühl. Da nun sowohl Leptin als auch Insulin nachweislich auf Astrozyten Einfluss haben, schlagen die Forscher vor, ein neues Modell zu entwickeln, was neben den Nervenzellen auch die Astrozyten als Stellschrauben des Stoffwechsels und des Hungergefühls berücksichtigt. Von dem dann detaillierteren Bild erhoffen sie sich neue Perspektiven für die Entwicklung von Medikamenten.
Das Deutsche Zentrum für Diabetesforschung e.V.
ist eines der sechs Deutschen Zentren der Gesundheitsforschung. Es bündelt Experten auf dem Gebiet der Diabetesforschung und verzahnt Grundlagenforschung, Epidemiologie und klinische Anwendung. Ziel des DZD ist es, über einen neuartigen, integrativen Forschungsansatz einen wesentlichen Beitrag zur erfolgreichen, maßgeschneiderten Prävention, Diagnose und Therapie des Diabetes mellitus zu leisten.
Mitglieder des Verbunds sind das Helmholtz Zentrum München – Deutsches Forschungszentrum für Gesundheit und Umwelt, das Deutsche Diabetes-Zentrum DDZ in Düsseldorf, das Deutsche Institut für Ernährungsforschung DIfE in Potsdam-Rehbrücke, das Institut für Diabetesforschung und Metabolische Erkrankungen des Helmholtz Zentrum München an der Eberhard-Karls-Universität Tübingen und das Paul-Langerhans-Institut Dresden des Helmholtz Zentrum München am Universitätsklinikum Carl Gustav Carus der TU Dresden, assoziierte Partner an den Universitäten in Heidelberg, Köln, Leipzig, Lübeck und München sowie weitere Projektpartner.
Weitere Informationen erhalten Sie unter www.dzd-ev.de
Das Helmholtz Zentrum München
verfolgt als Deutsches Forschungszentrum für Gesundheit und Umwelt das Ziel, personalisierte Medizin für die Diagnose, Therapie und Prävention weit verbreiteter Volkskrankheiten wie Diabetes mellitus und Lungenerkrankungen zu entwickeln. Dafür untersucht es das Zusammenwirken von Genetik, Umweltfaktoren und Lebensstil. Der Hauptsitz des Zentrums liegt in Neuherberg im Norden Münchens. Das Helmholtz Zentrum München beschäftigt rund 2.300 Mitarbeiter und ist Mitglied der Helmholtz-Gemeinschaft, der 18 naturwissenschaftlich-technische und medizinisch-biologische Forschungszentren mit rund 37.000 Beschäftigten angehören.
Weitere Informationen erhalten Sie unter www.helmholtz-muenchen.de
Die Technische Universität München (TUM)
ist mit mehr als 500 Professorinnen und Professoren, rund 10.000 Mitarbeiterinnen und Mitarbeitern und 39.000 Studierenden eine der forschungsstärksten Technischen Universitäten Europas. Ihre Schwerpunkte sind die Ingenieurwissenschaften, Naturwissenschaften, Lebenswissenschaften und Medizin, ergänzt um Wirtschafts- und Bildungswissenschaften. Die TUM handelt als unternehmerische Universität, die Talente fördert und Mehrwert für die Gesellschaft schafft.
Dabei profitiert sie von starken Partnern in Wissenschaft und Wirtschaft. Weltweit ist sie mit einem Campus in Singapur sowie Verbindungsbüros in Brüssel, Kairo, Mumbai, Peking, San Francisco und São Paulo vertreten. An der TUM haben Nobelpreisträger und Erfinder wie Rudolf Diesel, Carl von Linde und Rudolf Mößbauer geforscht. 2006 und 2012 wurde sie als Exzellenzuniversität ausgezeichnet. In internationalen Rankings gehört sie regelmäßig zu den besten Universitäten Deutschlands.
Weitere Informationen erhalten Sie unter www.tum.de
Original-Publikation:
Caceres, C. et al. (2016): Astrocytic insulin signaling couples brain glucose uptake with nutrient availability, Cell, DOI: 10.1016/j.cell.2016.07.028